Fast, High-Order Methods for Scattering by Inhomogeneous Media

نویسنده

  • E. McKay
چکیده

In this thesis, we introduce a new, fast, high-order method for scattering by inhomogeneous media in three dimensions. As in previously existing methods, the low (O(N logN)) complexity of our integral equation method is obtained through extensive use of the fast Fourier transform (FFT) in evaluating the required convolutions. Unlike previous FFT-based methods, however, this method yields high-order accuracy, even for scatterers containing geometric singularities such as discontinuities, corners, and cusps. We begin our discussion with a thorough theoretical analysis of an efficient, highorder method recently introduced by Bruno and Sei (IEEE Trans. in Antenn. Propag., 2000), which motivated the present work. This two-dimensional method is based on a Fourier approximation of the integral equation in polar coordinates and a related, generally low-order, Fourier smoothing of the scatterer. The claim that use of this loworder approximation of the scatterer leads to a high-order accurate numerical method generated considerable controversy. Our proofs establish that this method indeed yields high-order accurate solutions. We also introduce several substantial improvements to the numerical implementation of this two-dimensional algorithm, which lead to increased numerical stability with decreased computational cost. We then present our new, fast, high-order method in three dimensions. An immediate generalization of the polar coordinate approach in two dimensions to a spherical coordinate approach in three dimensions appears less advantageous than our chosen approach: Fourier approximation and integration in Cartesian coordinates. To obtain smooth and periodic functions (which are approximated to high-order via Fourier series), we 1) decompose the Green’s function into a smooth part with infinite support and a singular part with compact support; and 2) replace, as in the two-dimensional approach, the (possibly discontinuous) scatterer with its truncated Cartesian Fourier series. The accuracy of our three-dimensional method is approximately equal to that of the two-dimensional method mentioned above and, interestingly, is actually much simpler than the two-dimensional approach. In addition to our theoretical discussion of these high-order methods, we present a parallel implementation of our three-dimensional Cartesian approach. The efficiency, high-order accuracy, and overall performance of both the polar and Cartesian methods are demonstrated through several computational examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Higher Order B-Splines 1-D Finite Element Analysis of Lossy Dispersive Inhomogeneous Planar Layers

In this paper we propose an accurate and fast numerical method to obtain scattering fields from lossy dispersive inhomogeneous planar layers for both TE and TM polarizations. A new method is introduced to analyze lossy Inhomogeneous Planar Layers. In this method by applying spline based Galerkin’s method of moment to scalar wave equation and imposing boundary conditions we obtain reflection and...

متن کامل

A Fast 2d Volume Integral- Equation Solver for Scattering from Inhomogeneous Objects in Layered Media

The stabilized biconjugate gradient fast Fourier transform (BCGS-FFT) method is applied to simulate electromagnetic and acoustic scattering from inhomogeneous objects embedded in a layered medium in two dimensions. Two-dimensional layered-media Green’s functions are computed adaptively by using Gaussian quadratures after singularity subtraction. The Green’s function is split into convolutional ...

متن کامل

Reconstruction of 3-d Objects Buried in Layered Media Using Born and Distorted Born Iterative Methods

Abstract: We develop three-dimensional electromagnetic inverse scattering methods to reconstruct buried objects in layered media. The nonlinear inverse problem is solved iteratively via conjugate gradient approach; within each iteration, the problem is linearized by Born and Distorted Born approximations. The forward solution for layered media is provided by the stabilized biconjugate-gradient ...

متن کامل

Optimal Control of Light Propagation Governed by Eikonal Equation within Inhomogeneous Media Using Computational Adjoint Approach

A mathematical model is presented in the present study to control‎ ‎the light propagation in an inhomogeneous media‎. ‎The method is ‎based on the identification of the optimal materials distribution‎ ‎in the media such that the trajectories of light rays follow the‎ ‎desired path‎. ‎The problem is formulated as a distributed parameter ‎identification problem and it is solved by a numerical met...

متن کامل

An efficient high-order Nyström scheme for acoustic scattering by inhomogeneous penetrable media with discontinuous material interface

This text proposes a fast, rapidly convergent Nyström method for the solution of the Lippmann-Schwinger integral equation that mathematically models the scattering of time-harmonic acoustic waves by inhomogeneous obstacles, while allowing the material properties to jump across the interface. The method works with overlapping coordinate charts as a description of the given scatterer. In particul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002